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Abstract--A model for unconfined bubble plumes is developed without assumptions as to the form of the 
velocity and gas-fraction profiles or as to the fraction of the momentum flux associated with the mean flow. 
Dimensionless solutions for axisymmetric and plane-symmetric extended sources indicate an initial con- 
traction followed by an almost linear expansion which closely resembles the single-phase case. A second 
contraction is predicted near the surface of deep bodies of liquid. Gas and liquid velocity measurements in 
laboratory-scale plumes are presented, providing information on entrainment coefficients, velocity profiles, 
bubble velocities and the contribution of velocity fluctutations to the total momentum flux. The latter effect 
is considerable, providing an explanation of the "too-low" plume velocities found by other investigators. 

i. INTRODUCTION 
The upward flow ("plume") produced by the continuous injection of gas in a body of liquid has 
many important applications, aside from its intrinsic interest: destrafication of reservoirs, 
prevention of salt intrusion in harbours, mixing in steelmaking processes, and so on. Practical 
situations may be divided into the unconfined case, in which the width of the body of liquid is 
large in comparison with that of the plume, and the confined case in which this is not so. In 

what follows, attention is restricted to the unconfined case, for which the pressure variation 
outside the plume is approximately hydrostatic. The confined case has been considered by 
Freedman & Davidson (1969) and Rietema & Ottengraf (1970). 

The unconfined case has already received considerable attention: Cederwall & Ditmars 
(1970), Abraham (1972), Kobus (1973, summarizing e~irlier work), Goossens & Smith 0975), 
Hussain & Siegel 0976), Tekeli & Maxwell (1978), the others. Only three of the above 
investigations included measurements: Kobus and Goossens & Smith (liquid-velocity 
measurements with a propeller), and Tekeli & Maxwell (hot-wire measurements of liquid 
velocity, gas fraction and bubble velocity). In developing their theories, all investigators: 

(i) Made specific assumptions as to the form of the (mean) liquid-velocity and gas-fraction 
profiles (top-hat in the case of Hussain and Siegel, Gaussian in the other cases). 

(ii) Ignored contributions to the momentum flux of the plume from the fluctuating com- 
ponent of the liquid velocity. 

(iii) Made simplifying assumptions as to the initial development of the plume and the 
influence of injection geometry--usually the assumption of a virtual origin of (a priori) 
unknown location. 

The present contribution is both theoretical and experimental. On the theoretical side, 
attention is directed to the above three points. Plume equations are developed without 
assumptions as to the form of the liquid-velocity or gas-fraction profiles or as to the proportion 
of the total momentum flux associated with the mean flow. The influence of injection geometry 
on initial and later plume development is investigated for the case of extended sources 
(perforated discs or strips). The plume is predicted to undergo an initial contraction (later 
confirmed experimentally). A second contraction, not yet observed, is predicted near the 
surface of deep bodies of liquid. Finally, a new method of normalizing the plume equations is 
introduced based on the primary parameters of influence: gas injection rate and acceleration 
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due to gravity. The dimensionless characteristics of large and small, single and two-phase 
plumes are then seen to be surprisingly similar. 

On the experimental side, local measurements are presented of mean liquid velocity 
(laser-doppler anemometry) and bubble velocity (double-electrode method) in small plumes 
from axisymmetric extended sources. Unlike the results of Tekeli and Maxwell, relative bubble 
velocities are found to agree with free-rise values. The liquid-velocity measurements lead to the 
conclusion that a considerable proportion (sometimes more than half) of the total momentum 
flux of the plume is associated with the fluctuating component of the liquid velocity. This effect, 
which appears to be correlated with the stirring action of the bubbles, is probably the cause of 
the "too-low" plume velocities noted by various other investigators (Cederwall & Ditmars1970, 
Tekeli & Maxwell 1978). Mass entrainment rates of the plumes investigated are found to be 
close to, or slightly greater than, those of single-phase free jets/buoyant plumes. 

2. DERIVATION OFTHE PLUME EQUATIONS 

2.1 Qualitative basis 

The situation to be considered is depicted in figure 1. Three stages in the evolution of the 
flow may be distinguished. 

(1) Close to the gas-injection plane the liquid has no vertical motion except in the immediate 
vicinity of individual bubbles. 

(2) This wake liquid shares its momentum with adjacent liquid and at some critical height all 
the liquid between the bubbles is in upward motion. This marks the beginning of the second 
stage, in which the flow may be considered to be a "plume". 

(3) The plume reaches the surface and the liquid flows off horizontally. 
In what follows, attention is focussed on stage 2. Stage 1 is considered briefly to establish 

the initial conditions for stage 2, but is concluded to be very short-lived in general. 
The evolution of the plume from its initial condition is determined by the rate of increase of 

its momentum flux, M, due to buoyancy and of its mass flux, m, due to entrainment. Momentum 
increase alone leads to contraction of the plume (as in a slow stream of water from a tap), 
increase of mass flux alone to expansion (as in a free non-buoyant yet). Which of these two 
processes dominates depends on the region of the plume concerned (figure 13). 

It is important to note that the mean momentum flux, M, is given by (axisymmetric case) 

L 
oo 

M = p 2"trr(l-ot)u2 dr [1] 

= ~ + EI, [2] 
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Figure I. Unconfined bubble plume from an extended source. 
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where 

.~ = p 2rrr(l - a)(a) 2 dr [3] 

and 

AT/= p 27rr(1 - a)( -~ dr. [4] 

Here r denotes radial distance, p liquid density, a the fraction of the time that gas is present in 
a point, u instantaneous liquid velocity, an overbar an average over the time that liquid is 
present, and ti the instantaneous departure of u from ti. Here and elsewhere the momentum of 
the gas is neglected. In the case of single-phase, free, turbulent jets (a = 0) M is around 10 per 
cent of M and is often disregarded. In the case of two-phase buoyant plumes, however, the two 
terms may initially be of the same order, leading to the apparent disappearance of momentum if 
.h~ alone is regarded. 

2.2 General  m o m e n t u m - i n c r e a s e  equat ion  

The rate of increase of the momentum flux is readily obtained from a force balance on an 
element of the plume (that within the control surface S, figure 1) if a number of simplifying 
approximations are made. Most of these are the same as in the theory of single-phase buoyant 
plumes (Turner 1969) and will not be repeated here. An additional approximation in the 
two-phase case is that the extra forces on the upper and lower surfaces of S due to cut bubbles 
(surface tension forces, excess-pressure forces within the bubbles, excess-pressure and viscous 
forces in the vicinity of bubbles) cancel. This approximation, like that of constant pressure 
across the plume, is justified if the expansion/contraction of the plume is sufficiently gradual. 
The momentum increase of the plume is then given by 

d M / d z  = - pga, [5] 

where z is distance measured vertically downward from an origin Zatm above the liquid surface, 
such that 

pgZatm = Patm [6] 

(g acceleration due to gravity, Pat~ atmospheric pressure) and a is the area occupied by gas in a 
cross section. The density of the gas has been neglected. For the single-phase case, p corresponds 
to the average density difference and a is the cross-sectional area of the plume. 

2.3 General  m a s s - i n c r e a s e  equat ion  

The tdrbulent entrainment law for single-phase axisymmetric plumes (Turner 1969) is 

d m / d z  = - K p v d ,  [7] 

where v and d are measures of the local plume velocity and diameter. In the absence of a priori  

knowledge of the velocity profile v and d may be derived from m and M: 

m = p(~rd214)v, M = p(~rd2/4)v 2 [8], [9] 

v and d are the "equivalent" velocity and diameter which the plume would have were its 
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velocity profile square. Equations [8] and [9] yield 

d = 2 m / X / ( z r p M ) ,  v = M [ m .  [10], [11] 

Turner (1%9) concludes the value of K for single-phase buoyant plumes to be the same within 
experimental error as that for single-phase free jets: K = 0.25 (Ricou & Spalding I%1) for the 
above choice of v and d. 

For a Gaussian profile of velocity with no velocity fluctuations and negligible gas fraction, 

[10] and [11] yield (Appendix 1) 

u = a = Umax e -:tb2 , [12] 

d = 2X/(2)b, v = u m x l 2 .  [13], [14] 

A physical interpretation of [7] is that the radial velocity with which matter is entrained is 
proportional to the plume velocity. The presence of d in the r.h.s, of [7] takes into account the 
area of the entraining surface. In the two-phase case, this surface is somewhat exetnded for 
given rn and M (and hence given d and v) due to the sectional area, a, occupied by the bubbles. 
The two-phase analogue of [7] is accordingly written as 

where 

d m / d z  = - Klpvdefr  , [15] 

*rd2,frl4 = ~rd214 + K 2 a ,  

and K2 is a dimensionless parameter of order unity. It is to be expected that 

K1 = 0(K) = 0(0.25). 

[16] 

[17] 

2.4 G a s - c o n t i n u i t y  

The value of a is related to the average gas velocity in the relevant cross section, v~, by 

m e  = pGvaa.  [18] 

For isothermal expansion of the bubbles, 

p c  = ( p ~ ) o Z / Z o  , [19] 

(me mass injection rate of gas, pG gas density, suffix o: in the injection plane), vG may be 
written as 

v~ = K 3 v  + v , .  [20] 

The first term gives the mean velocity of the liquid in which the bubbles are situated,/(3 being 
of order unity, v, is the mean relative velocity of the bubbles in the relevant cross section. 
Except in the initial region of the plume, where the gas fraction may be high, v, may be 
expected to be approximated by the free-rise velocity of a single bubble, though the influence of 
plume turbulence of course remains. This expectation is confirmed by the experimental results 
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(section 5.2.2). In the initial contracting region of the plume Korbijn (1977) concluded Vr to be 
somewhat lower. 

in the case of Gausslan profiles of velocity ([12]) and gas fraction, 

a = amax e -'~/~b~ , [21] 

with no velocity fluctuations and amx "~ 1, it is readily shown (appendix 1) that 

/(3 = 2/(1 + A 2). [22] 

Combination of [18]-[20] yields 

a = Gozolz(K3v + Vr) [23] 

where Go denotes the volume injection rate of gas, mo/(pa)o. 

2.5 General p lume equations 

Making use of [8], [9], [16] and [23], the momentum and mass equations [5] and [15] yield, on 
rearrangement, two coupled equations for the variation of d and v with height in the axisym- 
metric case: 

- d ( d )  = [ _ gGozo]2z(K3v + v,) + Kldv2{1 + 4K2Gozo/zrd2z(K3v + Vr)}m/2]/(Trdv2/4). [24] 

- dv  = [gGozo/z(K3v + Vr)-- Kldv2{1 + 4K2Gozo/~rd2z(K3v + v,)}ln]/(~rd2v/4) 
dz  

[25] 

The corresponding equations for the plane-symmetric case prove to be: 

- d(d) = [ _ gGozo/z(K~v + v,) + 2Klv2]/v 2 
dz  

[26] 

- d v  
dz  = [gGozol z( K ~ v + v,) - K I v2]l vd [27] 

where the equivalent width d and velocity v of the plume are defined by the equations 

m = pvd,  M = pv2d [28], [29] 

The quantities Go, m and M are now per unit length of the plume. The expressions are simpler 
than those for the axisymmetric case since the entrainment law for a plane single-phase plume, 

dmldz  = - K '  pv , [30] 

does not involve d and no use need therefore be made of a de~. The value of K' is approx. 0.16 
(Turner 1969). 

The general plume equations [24]-[27] reduce to those of Cederwall and Ditmars if the K2 
term is omitted and the substitutions made appropriate to a Gaussian velocity profile with no 
velocity fluctuations and amax '~ 1 ([13], [14] and [22] in the axisymmetric case, or [A1.6], [AI.7] 
and [Al.13] in the plane-symmetric case). 
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2.6 Asympto t i c  and normalized p lume equations 

To the authors' knowledge, the axisymmetric plume equations [24] 
analytical solution except in the asymptotic case of: 

(i) Vr -" O. 

(ii) z, Zo -~ ~, Zo/Z -~ 1. 

(iii) Zo - z ,  and hence d, large so that 

4GozohrdZz(K3v + Vr), = al(~rd214), ~ 1. 

In this case the equations reduce to 

and [25] have no 

- d(d) _ - 2gGo ~ 4K~ [24a] 
dz 7rK3dv 3" Ir 

4gGo 4KI  v [25a] 
- - =  ~rK3d2v 2 7rd 
- d r  
dz 

which have the solution 

d = - (12KJS~r)(z - Zvirt), 1Iv 3 = - (48K3K12[25~rgGo)(Z - Zvirt) [31], [32] 

D = - K ' ( Z  - Z~i~t), V = (K~K;) -113 

in which capital letters denote dimensionless quantities (D = d/L, V = v/U, etc.). 
In the two-phase case, other length and velocity scales are also impressed - Zo, vr and those 

connected with the initial conditions and it is not clear a priori which are the most suitable for 
normalizing the plume equations. The results of numerical solutions (section 4.2) indicate that 

[33'1, [34'1 

and 

where ( Z o -  zv~) is an unknown constant corresponding to the position of a virtual origin. 
Equations [31] and [32] correspond, as they should, to the form of solution obtained for 
incompressible single-phase buoyant plumes (Turner 1%9). If the density, p~, of the lighter fluid 
is no longer negligible, Go must be replaced by Go(p2-p~)/p2. 

The equations for the plane case corresponding to [31] and [32] are: 

d = - K l ( z  - Zvirt), /3 = (gGo/K;KO 113 = constant. [33], [34] 

In the above situation only two physical parameters remain to determine the plume 

development: Go and g. The only characteristic length and velocity scales, L and U, which can 
be constructed from these are: 

L = (GoZ/g) 115, U = (Gog) I/~ [35], [36] 

(plane case: L = (Go2/g) j/3 , U = (Gog) 1/3) [37], [38] 

These scales can be used to non-dimensionalize the equations and their solutions. The solutions 

[31]-[34] then become 

D = ( - 12Kl /51r ) (Z -  Zvi~t), 1/V 3 = - (48K3KI2/25~r)(Z-  Zvirt) [31'], [32'] 
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under conditions of practical interes tthe primary parameters of influence are the same as in the 
single-phase case, namely Go and g. Zo, v, and the initial conditions are of secondary influence 
and when the two-phase equations are normalized with the help of the scales of [35]-[38], the 
dimensionless solutions therefore bear a close resemblance for large or small, single- or 
two-phase plumes and for diverse initial conditions. 

Tekeli and Maxwell normalized their equations with the velocity scale of [36] and [38] but 
used zo as length scale. Cederwall and Ditmars also chose Zo as length scale and chose vr(1 + A 2) 
as velocity scale. This has the appeal that the normalized solutions depend on only onet 
parameter, K~(1 + A2)(ZoVr3/gGo) 112. The dimensionless solutions, however, are very sensitive to 
the value of this parameter, which is to be expected since the scales chosen depend strongly on 
the values of v, and Zo whereas the actual plume behaviour does not. 

Making use of [35]-[38], the normalized forms of [24]-[27] become: axisymmetric case 

- d D  
d Z  = [ - Z o / 2 Z ( K 3 V +  V,.)+ KIDV'Z{I+4K2Zo/'sD2Z(K3V+ Vr)}II2]/(zrDV2/4) [24'] 

- d V  
d Z  - [Zo/Z(K3 V + Vr) -- KIDV2{1 + 4K2Zo/1rD~Z(K3 V + Vr))l/2]/(~D 2 V[4) [25'] 

plane-symmetric case 

- d D  
= [ - ZolZ(K~ V + V,) + 2KI V2]I V 2 [26'] 

- d V  
d Z  = [Zo/Z(K~ V + V,) - KI V2]/VD. [27'] 

3. I N I T I A L  C O N D I T I O N S  

The transition from stage 1 to stage 2 discussed in section 2.1, whereby all the liquid 
between the bubbles first attains an upward velocity provides the initial conditions for the 
plume development. In the immediate vicinity of a bubble the liquid then has a velocity of order 
v,, while exactly between bubbles the velocity is almost zero. The initial equivalent plume 
velocity, vo, may therefore be written as 

Vo = f l y , ,  or Vo = ~V, ,  [39], [39'] 

where/3 = 0(0.5). 
The initial value of d~fr is equal to the width of the gas-injection device. In the axisymmetric 

case, therefore, 

lrd2nil4 = ~'(doff)o2/4 = ~'do2/4 + K2a 

do 2= d2,i-  4K2Go/'n'(1 + Ks/3)v,, [40] 

o r  

Do 2 = Di2nj- 4K2hr(1 + K3/3)Vr, [40'] 

making use of [16], [39], [23], [40] and the fact that Z =  Zo very nearly (see below). In the 

tTwo if K2 is included. 
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plane-symmetric case the corresponding condition is 

do = di,j-  K~Go/(I + K~fl)vr, 

or 

Do = Di,i - K~/(1 + K~[3) V ,  

[411 

[41'] 

[40] and [41] indicate that if Go is increased for a given gas-injection device, do decreases, 
finally becoming zero at some critical Go value. Beyond this point the rise velocity of the 
bubbles is insufficient to carry off the gas in bubble form and a change in initial flow regime 
must occur. This new situation is beyond the scope of the present considerations, but is 
discussed briefly in section 5.1. 

The only question remaining is the height above the injector at which the transition from 
stage 1 to stage 2 occurs. The momentum equation [5] also applies to stage 1, and since no 
global liquid motion exists, v~ - v,, while z ~ zo. [5] therefore yields 

- dM/dz  ~ pgGo/vr, 

At the transition to stage 2, 

i.e. - Az  ~ AMvJpgGo.  [42] 

A M  = M = p( Trdoe/4)([3v,) 2 

- Az  ~ lr[32do2v3/4gGo, or - A Z  ~ 1rfl:Do 2 V3/4.  [431 ,[4Y] 

and [42] becomes 

For the values of Do and V, of practical interest (section 4.1), it will be seen that 

- A Z ~  < 1 

so that the height of the stage 1 zone may in general be neglected and the plume development 
approximated as commencing immediately above the gas injector. 

4. NUMERICAL SOLUTIONS OF THE DIMENSIONLESS PLUME EQUATIONS 
4.1 Range o f  paremeters o[ practical interest 

The range of values of the various parameters of practical interest in the axisymmetric case 
is indicated in Table 1. Go ranges from the order of 10 -4 m 3 s -1 (L = 1.6 cm, U = 0.4 m s -I) 
in small laboratory plumes to the order of 10 -I m3s -1 (L = 25cm, U = 1.6m s -I) in, for 
example, a natural-gas blow-out under the North Sea. The corresponding range of Zo values is 
comparatively narrow however since, as in the above examples, large Go values are generally 
accompanied by large depths of liquid. 

Table 1. Range of parameters in the 
axisymmetric case 

Parameter Min. Max. Standard 

Zo lO 2 103 5OO 
V, 0.125 0.5 0.25 
Do 0.5 I0 2 
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The free-rise velocity of bubbles in water in the most usual size range of a few mm to a few 
cm varies little (20-30 cm/s) and the tabulated variation of V, is largely a reflection of the 
variation in U. 

The wide range of Do values reflects the fact that there is little practical limitation on this 
value. 

A similar range is to be expected in the plane-symmetric case. 

4.2 Results 
The dimensionless plume equations for the axisymmetric case, [24] and [25], are readily 

integrated in parallel by a simple finite-difference scheme. The variation of D and V with height 
is presented in figures 2 and 3 for the "standard" case (table 2). The related values of Def~, of 
the dimensionless sectional area occupied by gas and of the dimensionless mass and momentum 
fluxes are obtainable from the dimensionless forms of the relations [23], [16], [8] and [9]. 

The plume is seen first to undergo a contraction, after which it expands until Z - D, when a 
second contraction occurs. This behaviour is qualitatively explicable as follows. The increase in 
momentum of the plume with height tends to increase its velocity and hence, by continuity, 
decrease its diameter. Mass entrainment has the opposite effect. Initially the latter process is 

1 0 0  2 
D 

D / 

| s g 

II Z / 

- 1 

~_ Zo-Z 

O~ I I I , 
0 1 0 0  3 0 0  5 0 0  

Figure 2. Variation of D and V with height in the standard axisymmetric case (the broken lines indicate the 
asymptotic solution). 

2 - ~ ~ Zo-Z 

0 - ~ A  I i I 
0 1 2 2 . 5  

Figure 3. As figure 2. Initial development of the plume. 
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Table 2. Standard values of the 
various parameters in the 

axisymmetric case 

Parameter Standard value 

Z,  500 
v, 0.25 
/9,, 2 
/~ 0.5 
K, 0.25+ 
K2 1 
K~ 1 

+Single-phase free jet/plume 

weak because of the low plume velocity but the former is not: hence the initial contraction. 
Later, mass entrainment is the stronger effect and the plume velocity decreases while its 
diameter increases. When Z (and hence the absolute pressure) becomes very small, however, 
the volume of buoyant gas becomes very large and the momentum increase again dominates, 
leading to a second contraction. For this contraction to be observable, the liquid depth would 
have to be some 20 Zatm, a condition which is only satisfied in the sea or in low-pressure 
systems. This explains the absence of observation of the effect. 

During the expansion phase of the plume, up to Z - Z o / 3 ,  the variation of D is closely 
approximated by the asymptotic solution, in which the virtual origin has for simplicity been 
chosen in the plane of injection. V is initially somewhat lower than in the asymptotic case, as 
would be expected from the non-zero value of vr (smaller a, less buoyancy) but catches up at 
Z - Z o l 3  due to the increased volume of gas. This close similarity to the asymptotic (i.e. 
single-phase plume) solution will be seen to be maintained if the various parameters are 
assigned other values (figures 4-10). 

The influence of the/3 and K2 values (figures 4 and 5) is only noticeable in the first part of 
the plume and there is slight. The influence of Do is likewise principally in the initial region but 
there it can be considerable (figure 6). The velocity in the contraction decreases with increasing 
Do, while the distance of the virtual origin below the plane of injection increases (Zv~,, - Zo = a 

few Do). For the smaller D,, values, the predicted rate of contraction is too high for the results 
to be more than qualitatively reliable since the assumption of constant pressure in a cross- 
section is no longer admissable. 

loi! o i , ~ , 
II 

5 

Z o - Z  

0 I i I , 
0 1 0  3 o  

4. 2 

2 1 i 

0 0 
5 0  0 

t 
I f~ .  s 

,,, ,7/o: 5 \ 

,, : -  

i I i I 
1 2 2 . 5  

Figure 4. Influence of/~ value on plume development in the standard axisymmetric case (-D, - -  V). 
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Figure 5. Influence of K2 value on plume development in the standard axisymmetric case (-/:),--1/). 
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Figure 6. Influence of Do value on plume development in the standard axisymmetric case (-D, - -  V). 
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Figure 7. Influence of V, on the deviation from the asymptotic solution (D,,s, V,,~) in the standard axisymmetric 
case (-D, - -  V). 

Figure 8. Influence of K3 on the deviation from the asymptotic solution (D,,~, V,,~) in the standard axisymmetric 
case (-D, - -  V). 
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case (-D, -- V). 

The relation between the actual and the asymptotic solution for various values of V,, K3, Km 
and Zo is indicated in figure 7-10. 

The corresponding results for the standardt plane-symmetric case are given in figure 11. 

s. EXPERIMENTAL RESULTS 
5.1 The system and the measurements 

The system employed is depicted in figure 12. A porous sintered-glass disc, of active 
diameter 26 mm, produced fairly uniform bubbles of equivalent diameter~: about 2 mm (figure 
13) in 28 cm of water in a 2.5 m diameter tank. Three flow rates were employed: 

Case 1, Go = 2.86 x 10 -5 m 3 s -~ 

Case 2, Go = 2x (Go)  .... 1 

Case 3, Go = 3 x (Go)case I. 

At a flow rate of about 3.5 times that of case 1, the change in flow pattern alluded to in section 3 
took place. The surface of the injector became completely covered in a layer of air from which 
large bubbles periodically broke away. From [40], it may therefore be concluded that 

4K2 × (3.5 x 2.84 x 10 -5) = (2.6 x 10-2) 2 . 
or(1 + K3fl)Vr 

If the standard values of section 4.2 are adopted for K2, K3 and fl, this yields v, = 0.12 ms-l: 
somewhat less than half the value measured higher up in the plumes. This agrees with Korbijn's 
(1977) conclusion that v, is lower in the high-gas-fraction initial region of the plume. 

Although the initial value of vr may be expected to be somewhat higher in the lower flow rate 
cases 3, 2 and 1, for simplicity the term 4K2/cr(l + K3[3)Vr will be assumed to have the same 

tKl equal to 0.16, and the other parameters the same as in the standard axisymmetric case (table 2). 
~The diameter of a sphere of the same volume. 
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b o t t o m  m e a s u r i n g  v o l u m e  

Figure 12. Experimental set-up. 

value as at the transition flow rate. [40] then yields: 

Case 1, do "- 2.20cm 
Case 2, do = 1.70 cm 
Case 3, do = 0.99 cm. 

The periscope system (figure 12) was used to carry out laser-doppler measurement of mean 
local liquid velocity, using the method of reference beam in forward scattering. The system was 
tested with an artificial beam interrupter, provided by a rotating disc, and found to measure 
correctly (Goossens 1979). These measurements were carried out in a number of cross sections 
of the plume in all three cases. Bubble velocity measurements were carried out in case 1 only, 
using the well-known double-electrode method (vertical electrode spacing about 4 mm). 
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g 

Figure 13. Bubble plume from a porous sintered-glass disc of active diameter 30mm for a flow rate 
corresponding to case I (G,, = 2.86 x 10 -5 m 3 s-t). 

5.2 Results 
5.2.1 Visual observations. A photograph of a plume from a porous sintered glass disc under 

conditions similar to those of the measurements is shown in figure 13. The initial contraction is 

clearly observable. 
5.2.2 Liquid velocities. As examples of the liquid velocity measurements, two profiles are 

presented in figure 14 for the lowest and highest gas flow rates (cases 1 and 3) at a height of 
some 12cm above the injector. The profiles are normalized with the help of the maximum 

velocity, am~x, and the half radius, rtl2 (at which ti = amax/2). For comparison, a Gaussian profile 
is also shown. In both cases the correspondence with the Gaussian profile is very close up to a 
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Figure 14. Variation of ti across the plume for z,,-z = 12 cm: (a) case l, (b) case 3. 

normalized radius of 1.5. In case l, no bubbles were found beyond this radius during the 
bubble-velocity or laser measurements, which presumably explains the low liquid velocities 
there. The reverse effect in case 3 is presumably due to the presence of bubbles in the outer 
flow (established by the laser measurements), as a result of the greater diffusing action of the 
liquid flow (~max approximately double that in case 1). 

5.2.3 Bubble velocities. Figure 15 shows the variation of relative bubble velocity (absolute 
velocity minus local liquid velocity) across the plume in the same situation as figure 14(a). The 
higher relative velocities in the outer zone of the plume could be explained by fact that the 
bubbles arriving here as a result of plume turbulence possess in general a higher axial 
component of velocity than the surrounding, bubble-free, entrained liquid. 

The relative velocity of about 28 cm/s obtained in the central region of the plume agrees well 
with the free-rise velocity of bubbles of the size concerned (equivalent diameter about 2 mm) in 
pure water (figure 16). Although tap water was used in the experiment, it seems plausible that 
because of the rapid formation and high concentration of the bubbles, not enough surface- 
active matter diffuses to the bubbles in the plume to produce the tap-water characteristic. 



514 A.K. CHESTERS et al. 

50  

4 0  

3 0  

20 

10 

I 

( c m l s )  

x 

X 

I 

x x 

x 
x 

x 

÷ 
÷ ÷ 

÷ 

x bubble v e l o c i t y , u  

• r e l a t i v e  bubble 
v e l o c i t y ( u  b -  ~ )  

4. 

- ~  r ( c m )  * 

O t l  + * I I I * 1 
- 4  - 2  0 2 4 

Figure 15. Variation of bubble velocity across the plume (case l, z , , - z  = 12.1 cm). 

- -  6 O  

F 4o 
u 

~ 2o 
u 
o 
"~ 1 0  

> 8 
i 6 
1- 

L. 
U 

I ' I ' l'W'l l ~ I f ''I'I 

, , .  ~ l t c r c d  

2 

I i 
0.01 

O .02  

[ ' 

i * i ~ . l  | * , i  , * J l , I  I * 

0 . 0 4  0.1 0.4 1.0 4.0 
0 . 0 6  0 .2  0 .8  2.0 

E q u i v a l e n t  R a d i u s  ( c m )  

Figure 16. Rise velocities of bubbles in filtered and tap water (Haberman & Morton 1956). 

5.2.4 Mass entrainment rates. Since the mean mass flux is given by 

° Io m = p 2~rr(1 - a)(~ + ~) d r  = p 2~rr(1 - a ) ~ .  d r ,  

the value of m, unlike that of M, can be obtained from the measured profiles of ~. 

[44] 
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The correction required to take account of a in [44] is readily obtained (appendix 2) if the 
profiles of a and a are approximated as Gaussian as in [12] and [21]: 

m/mint = 1 - am J ( 1  + I/A 2) [451 

with 

Otma x = pG]mint[A 2/(l + ~ 2) + l~2 / /~max] ,  [ 4 6 ]  

where mint is the mass flux obtained by integration of the velocity profiles without regard to a: 

mint = P 2~rrt~ d r .  [47] 

The value of A used is not of great importance since the magnitude of the correction proves 
insensitive to it. Here a value of unity is adopted since the boundary of the aerated zone, as 
revealed by the laser measurements, indicated A to vary from somewhat less than unity in case 
1 to somewhat greater in case 3. 

The variation of the resulting values of m with height above the injector is shown in figures 
17-19 together with the numerical predictions for various values of Kj, v, = 28cm/s and 
standard values of fl, K2 and K3 (table 2). The choice of the latter value is discussed further in 
section 5.2.5. The correspondence between theory and measurement is good, especially in cases 
1 and 2. The best-fit K~ values are close to the single-phase value of 0.25, increasing somewhat 
with increasing gas flow rate. 

5.2.5 Momentum flux. The momentum flux associated with the mean flow, M ([3]), can be 
calculated from the mean-velocity profiles, applying a similar correction for the gas fraction as 
in the case of the mass flux (appendix 2). At the same time the value of the total momentum 
flux, M ([1]), can be computed, based on the standard values of/3, K2 and K3, v, = 28 cm s -I 
and the best-fit value for K~ (see preceeding section). The results are given in table 3. In all 
cases M is considerably lower than M. The ratio IVIIM rises from as little as 40 per cent at the 
lowest measuring stations to as much as 80 per cent at the highest. Similar results are obtained 
if somewhat different values are used for the various parameters. This is illustrated in table 4, 
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where the value of M at a height of 14 cm above the injector is calculated in case 1, with the 
same values of the various parameters as above, except for the parameter cited in each case. 

The increase in ~I/M with height suggests that the velocity fluctuations (~ - v,) produced by 
the relative motion of the bubbles are responsible for the large value of ~/([4]). In view of the 
composition of the terms M and ~r ([1]-[4]), a measure of this effect may be expected to be 
t~max(V~/amax) 2. This quantity is given in table 3 and is plotted against :~IIM in figure 20. Although 
a good deal of scatter is present, the general upward trend of ~IIM with decreasing 
amax(VJflmax) 2 is clearly observable, and no systematic separation of three cases occurs, despite 
the very different contributions of amax and (VJ~max) 2 to the total t e r m  arnax(t)~/lmax) 2. 

In figure 21, /~max]2v is plotted against the same group. For a Gaussian profile of velocity 
with no velocity fluctuations, this quantity should be unity ([14]). The "too-low" measured 
values of Uma~ are clearly observable. Again the effect correlates with amax(Vd~max) 2, but now a 
systematic separation of the three cases is discernable, presumably due to the systematic 
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Table 3. Relation between M and A~ 

Zo - z , m  Mkgms-2Mkgms -~ ,~4/M Otm, x ~max(VJ/~max~ 

case !, K~ = 0.25, v, = 0.28 ms-' ,  #,/(2 and K3 standard 

0.0577 0.0145 0.038 0.38 0.12 0.183 
0.0986 0 . 0 3 6  0 .058  0.61 0.07 0.084 
0.1216 0 . 0 4 2  0.070 0.60 0.06 0.076 
0.1524 0 . 0 4 7  0 .086  0.55 0.05 0.063 
0.1809 0 .062  0.101 0.61 0.04 0.046 
0.2029 0 . 0 7 2  0 .113  0.63 0.04 0.039 

case 2, K, = 0.3, v, = 0.28, #,/(2 and/(3 standard 

0.0734 0.050 0 .069  0 .73  0 . 1 9  0.094 
0.1125 0.080 0 .104  0 .77  0 . 1 3  0.059 
0.1474 0 .098  0 .137  0 .71  0.10 0.046 
0.1724 0 . 1 3 4  0 .161 0 . 8 3  0 . 0 8  0.036 
0.2029 0 . 1 4 4  0 .192  0 .75  0 . 0 7  0.032 

case 3, KI = 0.325, v, = 0.28, #,/(2 and/(3 standard 

0.0734 0.039 0 .087  0.45 0.38 0.110 
0.1283 0 .066  0 .157  0.42 0.22 0.079 
0.2034 0 .189  0.261 0.73 0.08 0.032 
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Table 4. Variation of M with the various 
parameters (case 1, 14 cm above the injector) 

Parameter changed M kgms-2M/M,~fe~c 

None 0.079 1 
v ,  = 0.20 ms-'  0.083 !.05 
do = 0.015 m 0.071 0.90 
# = 0.25 0.071 0.90 
K1 = 0.4 0.087 1.10 
/(2 = 0.5 0.079 1.00 
/(3 = 1.2 0.074 0.94 
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Figure 20. Ratio of the momentum flux, M, associated with the mean flow to the total flux, M, as function of the 
bubble-influence parameter amax(Vrh~max) 2. 
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change in the shape of the velocity profile with increasing gas flow rate discussed in section 
5.2.2. 

The same phenomenon ("too-low" plume velocities) was remarked on by Cederwall and 
Ditmars and by Tekali and Maxwell in the context of plane-symmetric plumes. In the plane 
case, the effect may be expected to persist to greater heights because of the relatively slow 
decay of the gas fraction. Cederwall and Ditmars would also have found the effect in the 
axisymmetric case, however, had they taken A - 1 rather than the unrealistically low value of 
0.2. 

CONCLUSIONS 

(1) Theoretical results 
(1.1) Simple equations for the evolution of buoyant two-phase plumes can be derived 

without assumptions as to the form of the velocity and gas-fraction profiles or as to the fraction 
of the momentum flux associated with the mean flow. The equations contain three dimension- 
less parameters K~,/(2 and/(3 of which the orders of magnitude, but not the exact values, are 
known a priori. 

(1.2) For extended sources, two stages may be distinguished in the evolution of the plume. 
In the first, only liquid in the immediate vicinity of the bubbles is in motion, while in the second 
the flow may be treated as a plume. Stage 1 normally has negligible height but serves to 
establish the initial conditions for stage 2. 

(1.3) For typical values of the relevant parameters, plumes from extended sources first 
contract and then expand almost linearly (i.e. rate of change of equivalent diameter with 
height = a positive constant): The virtual origin of this expansion is a few initial equivalent 
diameters below the gas injection plane. 

(1.4) The parameters of greatest influence on the plume development are the volume 
injection rate of gas and the acceleration due to gravity. Solutions of the plume equations 
normailized with length and velocity scales constructed from these parameters exhibit only a 
second-order dependence on the remaining parameters (figures 4--10), and so closely resemble 
the asymptotic solution for the single-phase, incompressible case. 

(1.5) The greatest deviation from the asymptotic solution is a second contradiction, which is 
predicted to occur near the surface of very deep bodies of liquid as a reault of gas expansion in 
the final part of the plume. 
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(2) Experimental results 
(2.1) The rates of mass entrainment in the small axisymmetric, air-tap water plumes 

investigated correspond to an entrainment coefficient K1 equal to, or somewhat greater than, 
that for a single-phase jet or plume (0.25-0.33). For the system concerned, K~ tends to increase 
with increasing gas injection rate. 

(2.2) The measured profiles of mean liquid velocity can be closely approximated as 
Gaussian up to about 1.5rln (ru2 the radius at which ti =/lmax/2). Beyond this point, liquid 
velocities are lower than Gaussian for the lowest gas injection rate and higher for the highest 
gas injection rate. This fact ties in with the absence of bubbles in the outer flow in the former 
case (a < 1; [21]) and their presence in the latter (A > 1). 

(2.3) The relative bubble velocities in the core of the plume correspond well with free-rise 
velocities in pure water. In the outer flow, relative velocities are higher. These facts may be 
explained, respectively, by the large ratio of bubble surface to water volume within the plume 
and by the outer, bubble-containing liquid originating in the high-velocity core flow. 

(2.4) The momentum flux associated with the mean liquid velocity, M, can be as little as 40 
per cent of the total momentum flux, M, predicted from the optimal value of Kt. This effect is 
attributed to the large contribution to M of velocity fluctuations associated with the bubbles. 
The ratio ffl/M correlates with the parameter Ot(tJJ/~max) 2 and rises to around 80 per cent high in 
the plume, where this parameter is small. This effect offers an explanation of the "too-low" 
plume velocities found by other investigators. 
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APPENDIX 1 
Relation between general and Gaussian plume parameters for the low gas-fraction, negligible 
velocity-fluctuation case 
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Plume width and velocity. The expressions for m a n d  M in the axisymmetric case reduce to 

fo o m = p 2"rrrUmax e-'2/b2"dr = 7rpUmaxb 2 [AI.1] 

M = p I ~ 27rrU~ax e-2r2/b2"dr = 1rpU2~xb2/2. [AI .2] 
Jo 

Substitution of [AI.1] and [A1.2] in [10] and [11] then yields [13] and [14]. 
In the plane-symmetric case, 

the corresponding results are: 

U : Uma x e -x2/b2 , [AI.3] 

m = 20 Umax e -x2162. dx = pUma x bV'rr [A1.4] 

fo ~ ~2 o-2x2/b2 M = 2p . . . . .  • dx = pU2axb~/(~r/2) [AI.5] 

d = ~/(2~r)b, v = Urnax/~¢/2. [AI.6], [A1.7] 

and 

Gas distribution parameter.  The volume flux of gas through any section of the plume, G, is 
given in the axisymmetric case by 

fo o G = 21rr(u + v , )a  dr  

= fo 21rr(v, + Uma x e-r2/b2)O~max e -'2/(xb~" • dr 

= "rrvrOemax(,h.b) 2 + ,rrUmaxOtmax(Ab)2/(l + A2). [ A 1 . 8 ]  

The sectional area occupied by gas, a, is given by 

fo o a = 2~rrt~ • dr  = 7-rOtmax(Ab) 2 . [AI.91 

Substitution of [AI.8] and [A1.9] in [23], bearing in mind that 

G = Gozo/Z [AI.10] 

and making use of [14], yields [22]. 
In the plane-symmetric case, the corresponding results are: 

G = v,X~tmax(hb)'~c/'rr + UmaxOtmax(Ab)'V/[Tr](l + A2)] [ A I . I  1] 

a = Otmax(Ab)'~Tr [AI. 12] 

K] = X/[2/(I + A2)]. [Al.13] 
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A P P E N D I X  2 

Corrections to the integrated profiles o[ ~ and ~2 to take account o[ absence o[ liquid during a [raction 
of the time 

Only the axisymmetric case is considered here. From [44] and [41], the relation between m and 

min t i s  

m[mint = 21rr(1 - a)~.  dr/ 21rN. dr .  [A2.11 

If the profiles of ~ and a are approximated as Gaussian ([12] and [211), [AL1] yields [451. 
The magnitude of amax is obtained from the ratio of G and m~.t/O: 

fo o G _ 21rr(Li+ v , ) ~ . d r  

(min,lp) 
- J= 21rr~. dr 

O~max,~ 2 /)rO~max,~ 2 

- U m a x  ' 

which yields [46]. 
The relation between M and Mi.t is 

M]Mint = f ?  27rr(I - a)a2 . dr/ f ?  2,n'r~2 . dr 

= 1 - amax/(1 + I/2A~) • [A2.2] 


